Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

Dr.-Ing. Dominik Schwarz,
ika, Aachen, Germany

CO-Authors
Dipl.-Ing. Harald Bachem, ika, Aachen, Germany
Ed Opbroek, IISI, Detroit, US
Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

- Motivation
- Structural Stiffness Testing
- Pedestrian Safety Testing
- Summary
- Outlook
Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

- Motivation
- Structural Stiffness Testing
- Pedestrian Safety Testing
- Summary
- Outlook
Requirements for Automotive Hoods

- high global stiffness (bending, torsion)
- high local denting stiffness and strength (static and dynamic)
- dynamic stiffness (vibration behaviour)
- controllable deformation behaviour in frontal collision
- energy absorption at head impact
- minimized weight
- low costs
application of aluminum hoods because of smaller specific weight

application of steel hoods because of costs and properties

demand for comparing investigation (steel/aluminum)

actual series hood in two different material variants steel and aluminum for North America and Europe

comparison of the two material concepts according to
 - weight
 - structural behavior
 - pedestrian head impact
Structural Design of Analyzed Hoods

series hoods made of steel (USA) and aluminum (Europe) with nearly the same design of inner hood structure

www.fka.de

www.autosteel.org
Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

- Motivation
- Structural Stiffness Testing
- Pedestrian Safety Testing
- Summary
- Outlook
Stiffness Tests (e.g. Torsion)

- force [N]
- deflection [mm]

- original part steel
- original part aluminum
- spare part steel
- spare part aluminum

DOF_{1,2,3,4,6} = 0
DOF_3 = 0
Further Stiffness Tests

- **lateral stiffness**
 - $\text{DOF}_{1,2,3,4,6} = 0$
 - $\text{DOF}_3 = 0$

- **transversal stiffness**
 - $\text{DOF}_{1,2,3,4,6} = 0$
 - $\text{DOF}_3 = 0$

\textbf{F}

High bending stiffness results in reduced fluttering at high velocities and good accuracy in gap width to the fenders.

Great Designs in STEEL Seminar

www.autosteel.org
<table>
<thead>
<tr>
<th></th>
<th>steel hood</th>
<th>aluminum hood</th>
<th>comparison [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hood mass</td>
<td>16.95 kg</td>
<td>9.00 kg</td>
<td>-46,9</td>
</tr>
<tr>
<td>thickness outer panel</td>
<td>0.68 mm</td>
<td>1.00 mm</td>
<td>+47,1</td>
</tr>
<tr>
<td>thickness inner panel</td>
<td>0.58 mm</td>
<td>1.00 mm</td>
<td>+72,4</td>
</tr>
<tr>
<td>lateral stiffness</td>
<td>97.17 N/mm</td>
<td>66.42 N/mm</td>
<td>-31,6</td>
</tr>
<tr>
<td>(absolute value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transversal stiffness</td>
<td>97.70 N/mm</td>
<td>63.81 N/mm</td>
<td>-34,7</td>
</tr>
<tr>
<td>(absolute value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>torsional stiffness</td>
<td>2.58 N/mm</td>
<td>1.82 N/mm</td>
<td>-29,5</td>
</tr>
<tr>
<td>(absolute value)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigation shows significantly higher stiffness of the steel hood in comparison to the aluminum hood but also significantly higher weight.
Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

- Motivation
- Structural Stiffness Testing
- Pedestrian Safety Testing
- Summary
- Outlook
Animation of Vehicle/Pedestrian-Crash

experimental testing with full body dummies of pedestrians is too cost-intensive

development of testing procedure which is based on subsystems for head, pelvis and leg areas of the pedestrian
Pedestrian Safety Directive of the European Parliament

Head Impactor

- **Child Head to Windscreen**
 - Phase 1 (2005): $v = 35 \text{ km/h}$, $m = 3.5 \text{ kg}$
 - Phase 2 (2010): $v = 35 \text{ km/h}$, $m = 4.8 \text{ kg}$
 - 2/3: HIC = 1000
 - 1/3: HIC = 2000

- **Adult Head to Windscreen**
 - Phase 1 (2005): $v = 35 \text{ km/h}$, $m = 3.5 \text{ kg}$
 - Phase 2 (2010): $v = 35 \text{ km/h}$, $m = 4.8 \text{ kg}$
 - No limit

Upper Leg Impactor

- Phase 2 (2010): $v = 40 \text{ km/h}$, $m = 4.8 \text{ kg}$
 - HIC = 1000

Lower Leg Impactor

- Phase 1 (2005): $v = 40 \text{ km/h}$, $m = 13.4 \text{ kg}$
 - $\varphi_{\text{knee}} = 21^\circ$
 - $\tau_{\text{knee}} = 6 \text{ mm}$
 - $a_{\text{knee}} = 200 \text{ g}$

- Phase 2 (2010): $v = 40 \text{ km/h}$, $m = 13.4 \text{ kg}$
 - $\varphi_{\text{knee}} = 15^\circ$
 - $\tau_{\text{knee}} = 6 \text{ mm}$
 - $a_{\text{knee}} = 150 \text{ g}$

Forces and Moments

- $F_{\text{Sum}} = 5 \text{ kN}$
- $M_b = 300 \text{ Nm}$

Kinderkopfprüfkörper

- $v = 40 \text{ km/h}$
- $m = 4.8 \text{ kg}$
- $E_{\text{kin}} = 295 \text{ J}$
- HIC = 1000

Erwachsenenkopfprüfkörper

- $v = 40 \text{ km/h}$
- $m = 2.5 \text{ kg}$
- $E_{\text{kin}} = 1000 \text{ J}$

Oberschenkeprüfkörper

- $v = 40 \text{ km/h}$
- $m = 2.5 \text{ kg}$
- $E_{\text{kin}} = 154 \text{ J}$

Rechenkörpfe

- $v = 40 \text{ km/h}$
- $m = 3.5 \text{ kg}$
- $E_{\text{kin}} = 825 \text{ J}$

Kinderkopfprüfkörper

- $v = 35 \text{ km/h}$
- $m = 4.8 \text{ kg}$
- $E_{\text{kin}} = 2000 \text{ J}$
- 2/3: HIC = 1000
- 1/3: HIC = 2000

Erwachsenenkopfprüfkörper

- $v = 40 \text{ km/h}$
- $m = 4.8 \text{ kg}$
- $E_{\text{kin}} = 1000 \text{ J}$

Oberschenkeprüfkörper

- $v = 40 \text{ km/h}$
- $m = 13.4 \text{ kg}$
- $E_{\text{kin}} = 150 \text{ J}$

Kinderkopfprüfkörper

- $v = 35 \text{ km/h}$
- $m = 13.4 \text{ kg}$
- $E_{\text{kin}} = 2000 \text{ J}$
- 2/3: HIC = 1000
- 1/3: HIC = 2000
Definition of Head Impact Areas
(Marking of the Vehicle)

- Hood leading edge reference line
 - 600 mm at 50°

- Hood side reference line
 - 45°

- Hood rear reference line

- Wrap around distance
 - (1,000 mm for child, 1,500 mm for adult)
Definition of the Impact Areas

determination of the impact areas for adult head and child head and further partitioning in each 3 segments
in each of the 6 segments 3 critical impact points are chosen

critical impact points result from the available package below the hood

the coordinates are measured in relation to the reference point
9 tests each are executed with the adult and the child head impactor (total 36 tests)

documentation of the results by deceleration pulse, HIC, a_{3ms}, a_{max}, high-speed-videos and digital fotos of plastic hood deformation
Deformation Behaviour
Child Head Impact M2

Ch-M-2

aluminum (HIC = 785) steel (HIC = 1.278)

- bigger window for HIC calculation in aluminum version
- adequate deformation travel
- higher acceleration peak for steel version
- no significant secondary impact takes place
- 15-20 % more deformation travel for aluminum version

higher HIC-values for steel version
Ah-L-1

aluminum (HIC = 1.035)
steel (HIC = 869)

- nearly equal windows for HIC calculation
- higher first acceleration peak for steel version
- higher secondary acceleration peak for aluminum version
- higher HIC-values for aluminum version
Plastic Hood Deformation at Adult Head Impact L3

Ah-L-3

outer hood view

inner hood view

steel

aluminum

- relatively small deformation because of impact on suspension strut dome
- slightly bigger local deformation for aluminum hood
in 13 of 18 cases the steel hood had a better performance for the HIC.
Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

- Motivation
- Structural Stiffness Testing
- Pedestrian Safety Testing
- Summary
- Outlook
Summary

- Analysis of steel and aluminum with nearly identical design under the aspects structural stiffness and pedestrian safety.

- Steel hood shows better stiffness values combined with significantly higher weight.

- Most of the determined HIC values are as expected clearly above the HIC-limit of 1.000, because the vehicle was not constructed explicit for good pedestrian safety.

- Significant influence of the structure below the hood and available free deformation travel, comparatively small material influence.

- Comparison of 18 head impact points (steel vs. aluminum) results in smaller injury severity for the steel hood in 13 points.

- Constructive optimization of the hood for both materials will lead to a reduction of the injury severity.
Comparison of Steel and Aluminum Hood with same Design in View of Pedestrian Head Impact

- Motivation
- Structural Stiffness Testing
- Pedestrian Safety Testing
- Summary
- Outlook
Development of a Pedestrian-Friendly Hood
- Use of Numerical Optimization -

1. topography and topology optimization

2. draft versions

3. optimised inner panel
Development of a Pedestrian-Friendly Hood
- Benchmark of the HIC-Value -

- Child head area
- Adult head area

<table>
<thead>
<tr>
<th>HIC</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 700</td>
<td>Green</td>
</tr>
<tr>
<td>700-1000</td>
<td>Yellow</td>
</tr>
<tr>
<td>1000-1500</td>
<td>Blue</td>
</tr>
<tr>
<td>>1500</td>
<td>Red</td>
</tr>
</tbody>
</table>

Optimised vs Series
Development of a Pedestrian-Friendly Hood
- Method to Optimize the HIC-Value -

- child head impactor
- glue
- hood outer panel
- hood inner panel
- rigid wall (e.g. engine block)

\[\Delta g \]
\[\Delta h \]

60 mm

\(t_{\text{inside}} \quad t_{\text{outside}} \)